

Geobiology & Astrobiology at PKU

Bing Shen

School of Earth and Space Sciences Peking University

- Geobiology 1: The deep time ice-house climate
- Geobiology 2: The evolution of terrestrial system
- > Astrobiology 1: The early evolution of Planetary Earth
- > Astrobiology 2: The early evolution of metabolism

Glaciation records

Challenging the snowball Earth model

Stage 4: silt-fine sandstone: The meltdown of glaciation

Stage 3: coursing upward into a suite of diamictite: The second glacial episode

Stage 2: fine siliciclastic deposition with carbonate layers: Non-glacial interval

Stage 1: transition from Datangpo shale to Nantuo diamictite: The first glacial episode

Lang, 2018, PR

Dynamic glaciers in the Snowball Earth?

➢ Onset: Rodinia breakup → Continent-ocean configuration →
Chemical weathering

➢ Process: Complete ice-coverage → Termination of atmosphereocean exchanges

➤ Termination: High atmospheric $pCO_2 \rightarrow$ Intense chemical weathering \rightarrow Cap dolostone precipitation

Are there any biological processes involved in the Snowball Earth?

Ediacaran glaciations

A possible glacial fuse for the evolution of animals

Dilemma: Poor age constraints

- > Two episodes? multiple episodes? continuous?
- > The ages and durations of other Ediacaran glaciations need to be further constrained.

True Polar Wander (~580 Ma-560 Ma)

ca. 560 Ma poles

- Many blocks were moving much faster than them in theory of "plate drift"
- IITPW, i.e., the entire crust and mantle rotated ~90° about the liquid outer core to align Earth's maximum moment of inertial (Imax) with the spin axis

A Great late Ediacaran ice age (GEG)

Is this climate state stable?

- How did the 20 million-year-long ice age persist?
- What is the relationship between ice ages and biological evolution?

Maintenance of the great late Ediacaran ice age

- Intensity of continental silicate weathering could be enhanced by exposing more chemically reactive rocks from higher glaciated latitudes
- the newly exposed regions with high
 weatherability could increase weathering
 rate to maintain uninterrupted late
 Ediacaran ice age, especially during 575– 565Ma_o

Maintenance of the great late Ediacaran ice age

- Geobiology 1: The deep time ice-house climate
- Geobiology 2: The evolution of terrestrial system
- > Astrobiology 1: The early evolution of Planetary Earth
- > Astrobiology 2: The early evolution of metabolism

- Land plant is the key component in the Earth system, and the colonization of continents and formation of terrestrial ecosystem were the consequence of long term evolution of Earth system
- ✓ The origin and diversification of vascular land plant in late Paleozoic was the milestone of Earth system evolution
- Directly caused the dramatic changes in environments (e.g. glaciation and oxygenation) and associated with the accumulations of resources (e.g., coal, bauxite)

Chorover et al., 2007; Richardson, 2017

Objectives

Based on the fossil records of the South China and North China blocks to reveal the spatial-temporal distribution and evolutionary pattern of early land plants

\rightarrow Vegetation characters of different stages in plant terrestrialization

> To restore the land-sea sedimentary systems through Silurian to Carboniferous

 \rightarrow The relationship between paleogeography and vegetation evolution

> The element and mass transportations in different vegetation condition

→ Earth System model of different vegetation stages

> Devonian-Carboniferous coals, bauxites, and coal-related metals

 \rightarrow Mechanism of plant evolution driving ore formation

The history of terrestralization

✓ Six vegetation stages

1) The prologue of radiation of vascular plants in Silurian;

2) The origination and radiation of extant clades in Early Devonian;

3) The first appearance of forests in Middle Devonian;

4) The origination of seed plants in Late Devonian;

5) The development of proto-Cathaysian flora in Early Carboniferous;

6) The development of Cathaysian flora in Late Carboniferous and Permian

✓ Plants; paleosols; coals; and

- Geobiology 1: The deep time ice-house climate
- Geobiology 2: The evolution of terrestrial system
- > Astrobiology 1: The early evolution of Planetary Earth
- > Astrobiology 2: The early evolution of metabolism

When did the first continental crust form?

The direct evidence for subaerial volcanism can only be traced back no earlier than ~3.0 Ga

What can S-MIF signals tell us?

The oldest rock: BIF in NSB

Large Magnitude S-MIF Signals in NSB

The large magnitude S-MIF signal only occur in late Neoarchean to early Palaeoproterozoic (2.8-2.4 Ga) and sporadically in Mesoarchean (at ~3.4 Ga)

What can S-MIF signals tell us?

Felsic Volcanisms Eruptions?

- > ARA: Archean Reference Array
- > FVA: Felsic volcanic array

(Philippot et al., 2012)

The early evolution of Planetary Earth

- > We find Large magnitude S-MIF signals (~10‰) in >3.7 Ga BIFs;
- > Volcanic degassing with high SO_2/H_2S ratios would provide one solution
 - \rightarrow the appearance of thick continental crust or subaerial volcanic activity in the early Earth

- Geobiology 1: The deep time ice-house climate
- Geobiology 2: The evolution of terrestrial system
- > Astrobiology 1: The early evolution of Planetary Earth
- > Astrobiology 2: The early evolution of metabolism

The oldest sedimentary rocks : Banded Iron Formation

⁽Bekker et al., 2017)

Banded iron formations (BIFs), consisting of rhythmic Fe-rich and Si-rich mm- to cmthick laminae, are the Archean and Paleoproterozoic landmarks

Secular Distribution of Banded Iron Formation

BIF first occurred in 3.8 billion years ago (Ga), reached the maximum at about 2.5 Ga, and disappeared from the rock record since 1.8 Ga, except a brief window during the Neoproterozoic Snowball Earth (0.72-0.63 Ga).

Origin of rhythmic laminae in BIFs (Biosignature)?

⁽Dominic., et al., 2021)

Records of the early microorganisms

(Wang., et al., 2023)

What role do microorganisms play ? → Microbial iron oxidation and iron reduction

Raman Microscopy: Iron Minerals and Apatite

> Apatite and magnetite normally have a compromise boundary and apatite may contain magnetite inclusions

XRF mapping: Iron Minerals and Apatite

(~2.5 Ga BIFs in North China)

> Apatite is common and randomly dispersed (i.e., not associate with hydrothermal veins), but more enriches in Fe-rich laminae

The coupled Si-Fe-P precipitations

- > Laboratory experiments have confirmed the process of co-precipitation of Fe-Si-P
- > The petrographic observations indicate that the Fe-Si-P co-precipitation process is widely present during the formation of BIF.

Models for BIFs Lamination Formation

> Organic matter \rightarrow Fluctuations of Fe redox cycle \rightarrow BIFs lamination

- \succ Low organic matter \rightarrow Inactive DIR \rightarrow Inactive iron shuttle \rightarrow Fe-rich layers
- \succ High organic matter \rightarrow Active DIR \rightarrow Active iron shuttle \rightarrow Si-rich layers

Geochemical Test : Ge content in iron minerals

- The Ge content of iron minerals in the rich-silicon layer is lower than that of iron minerals in the rich-iron layer.
- > The change of Input or output (Ge)?

Geochemical Test : Ge content in iron minerals

Si-rich layer Iron-rich layer

Geochemical Test : Fe isotopes

Geochemical Test

> Benthic flux/iron shuttle

- > Iron isotopes
- > Nitrogen isotopes

Low TOC content in BIF

Explore the early evolution of metabolism

- ➢ From the snowball Earth to Cambrian explosion → Based on the stratigraphy in Siberia
- ➢ Paleozoic evolution of terrestrial system and reservoir effects (coal, bauxite...)→ Low latitude vs. mid-to-high latitude flora
- ➤ The habitability of early Earth → Based on the Archean of Siberia and North China

bingshen@pku.edu.c

n